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Experiments are presented for three turbulent boundary layers generated by laterally 
converging, laterally diverging and parallel flow on a flat plate. A converging potential 
flow field outside the boundary layer was generated by superposing a parallel flow in 
the x-direction, a row of equally spaced line sources in the wall-normal (j) direction 
and an analogous row of sinks in the transversal ( z )  direction. This arrangement 
resulted in a velocity that was constant far upstream, far downstream and along the x- 
axis. The convergence -aW/az has its maximum in the plane of the source and sink 
rows. This flow field was realized with the test section shown in figure 1, based on 
streamlines intersecting a rectangular cross-section far upstream. The diverging flow 
was generated by reversing the flow direction through the test section. 

The tests were conducted at about 42 m/s leading to a unit Reynolds number of 
2.5 x 106/m and to a Reynolds number based on the momentum thickness of 4000 to 
4700 at the inlet of the test sections, increasing up to 25000 at the outlet. In all three 
cases the velocity distribution near the wall agreed very well with the logarithmic law 
of the wall. The wake contribution in the outer layer was considerably increased by 
convergence and decreased by divergence. The Reynolds stresses, measured with 
crossed hot-wire probes, and the wall shear stress, measured with a floating-element 
balance, were generally increased by divergence and decreased by convergence and the 
same holds true for the mixing length and the turbulent viscosity. 

A finite-difference boundary-layer code using a simple turbulence model was used to 
predict the experimental results. The comparison showed good agreement for the two- 
dimensional flow, reasonable agreement for the diverging flow and poor agreement for 
the converging one. Use of the experimentally determined turbulent viscosity as input 
into the computation did not systematically improve the agreement but excellent 
agreement was found if it was combined with anisotropy of the turbulent viscosity. It 
was much more difficult to predict the converging flow as small errors in the crossflow 
had a large effect on the flow in the plane of symmetry ( z  = 0). 

1. Introduction 
Most turbulent boundary layers in engineering applications are subject to the basic 

strain rate aU/ay, where U is the mean velocity in the x-direction and y is the distance 
from the wall, and to additional strain rates. As the turbulent flow is highly nonlinear 
it is not possible to simply superpose the effects of the different strains. However, owing 
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to the complexity of the phenomena involved, it seems worthwhile to investigate cases 
with only one extra strain. Current methods cannot predict most complex flows either 
(Bradshaw 1988), and basic experiments of this type are therefore still needed. 

The present experiment investigates the influence of one extra strain rate, namely 
aW/dz, where z is the spanwise direction and W is the corresponding mean velocity 
component. Flow fields of this type were generated on the plane y = 0 of the test 
sections shown in figure 1. Lateral streamline divergence has three obvious effects. 
First, it introduces an additional term into the continuity equation which corresponds 
to a thmning of the boundary layer as in the case of an axisymmetric body. Secondly, 
the curvature of the streamlines induces a velocity component normal to the external 
streamlines (crossflow). Thirdly, it affects the turbulence structure through vortex 
stretching in the z-direction. The opposite trends are observed for converging 
streamlines. Most of the results presented will be for the plane of symmetry ( z  = 0). 
The cases with converging flow (~Dc) ,  with parallel flow (2D) and with diverging flow 
(3Dd) had almost identical initial conditions and the same experimental equipment was 
used. They can therefore be directly compared. For 3Dd the boundary-layer thickness 
6, the displacement thickness 6, and the momentum thickness S, were all decreased 
compared to 2D while the wall shear stress 7, and the Reynolds stresses were increased. 
For 3Dc the opposite holds true. The law of the wall in the form 

U+ = 5.62 10g,,y+ + 5.35 (1.1) 
was an excellent approximation for all three cases while the wake component was 
reduced for 3Dd and increased for 3Dc. Mixing length and turbulent viscosity were 
determined with the measured and aU/ay, where u and 0 are the velocity fluctuations 
in the x- and y-directions respectively. 

Experiments comparable to ours were recently presented by Saddoughi & Joubert 
(1991) for a diverging source-like flow. They also presented an excellent survey of the 
literature and reviewed the state of the art. The present results confirm and extend their 
findings. Comparable experiments were also conducted on a cylinder-cone geometry 
by Smits, Eaton & Bradshaw (1979), in a boundary layer on a flat plate carrying an 
upstream-facing wedge by Anderson & Eaton (1989) and in the plane between two 
longitudinal vortices created by a delta wing above a test wall by Pauley, Eaton & 
Cutler (1989). All cases considered diverging flow. Converging and diverging flows 
were investigated by Patel & Baek (1987a, b) on the plane of symmetry of a body of 
revolution at an angle of attack. General agreement with the present experiments can 
be observed but the existence of axial pressure gradients in most experiments makes a 
direct comparison difficult. Earlier experiments with three-dimensional boundary 
layers are reviewed by Humphreys & van den Berg (1981). 

Degani, Smith & Walker (1992) presented a theory for a turbulent boundary layer 
near a plane of symmetry. Results are given for self-similar flows at high Reynolds 
numbers and support the existence of the law of the wall. In the present experiment the 
pressure gradient i3pplaz changes sign with increasing x and a direct comparison with 
a self-similar flow is therefore not possible. 

A finite-difference boundary-layer code developed by Bettelini (1 990) and described 
by Bettelini & Fannelarp (1993) was used to predict the experimental results. 
Turbulence was modelled with turbulent viscosity equations suggested by Cebeci & 
Smith (1968). The two-dimensional flow was predicted very well while the agreement 
was poorer for 3Dd. For 3Dc the prediction of the momentum thickness beyond the 
section of maximum flow convergence was very sensitive to changes in parameters. 
Small errors in the crossflow seem to accumulate near the plane of symmetry which has 
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FIGURE 1. Test sections, generating converging (3Dc) and diverging (3Dd) flow above the plane 
y = 0. Velocity U is constant along x-axis. 

a considerable influence on the continuity equation and thus on the growth of 
boundary layer and momentum thickness. Two approaches led to this same problem. 
In one case, the full problem was solved by following several external streamlines while 
in the other one, only the flow in the plane of symmetry was considered and the extra 
term in the continuity equation was taken into account by solving an equation for the 
spanwise derivative of the crossflow. The problems appeared in both cases. This strong 
sensitivity is comparable with the case of a laminar boundary layer on a cone at angle 
of attack, as described by Moore (1956). The diverging flow on the windward side of 
the cone posed no problems while the converging flow on the leeward side became 
undetermined before separation of the crossflow took place. An attempt to use the 
experimentally determined turbulent viscosity as input for the computation met limited 
success, but excellent agreement was found if it was combined with anisotropy. 

In the following section the experimental set-up and the instrumentation will be 
described. The results will be presented in $ 3  and in 94 the experiments will be 
compared with numerical results. 
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2. Apparatus and measuring techniques 
A specially designed boundary layer wind tunnel, shown in figure 2, was used. The 

test wall 0, = 0) consisted of a ground stainless-steel plate, 25 mm thick and 4.7 m long 
carrying a probe holder and the floating-element balance. The steel plate could be 
moved 2.94m in the axial direction by a stepper motor with a total accuracy of 
k0.2 mm. This arrangement required a tilting by 3" of the whole tunnel upstream of 
the test section. The investigated boundary layer was thus formed on the tilted floor 
of the contraction and deflected by 3" at the junction with the test section. Transition 
took place more than 2 m upstream of the deflection. A detailed investigation of the 
boundary layer at x = 0 (850 mm downstream of the deflection) showed a standard 
turbulent boundary layer with excellent two-dimensionality (0.6 % r.m.s.-value of the 
wall shear stress) and a thickness of about 17 mm. The free-stream turbulence was 
approximately 0.1 YO. Details of the tunnel geometry and the screens used are given by 
Pompeo (1992). 

The test section was designed for a potential flow with uniform velocity U, = 42 m/s 
far upstream, far downstream and along the line y = 0, z = 0 with a prescribed 
aW/az(x, 0,O). These conditions can be satisfied by superposing a parallel flow in the 
x-direction with an infinite row of line sources with strength Q parallel to the y-axis at 
x = a, z = (2n+ l ) d  with n = ... - 1,0,1,2, ..., and similar line sinks at x = a, y = 
(2n + 1) d. With the potential of an infinite row of equidistant line sources given by 
Lamb (1945) the following velocity field results : 

U(x, y, z )  = U, + D(C,, - C,,) sinh n(x - a)/d, 
V(x, y, z) = DC,, sin ny/d,  

W(x, y, z )  = - DC,, sin nz/d, 
(2.1) I 

with 

+cos-- , D = e  "I' d 4d' 
n(x - a) + cos "]', C,, = [ cosh d 

Three sourcesink elements as described by (2.1) at a = 625 mm, 1000 mm, 1375 mm 
and d = 1000 mm were used to design the final test section. The three constants D, one 
for each source-sink element, were determined with the conditions 

aW/az(x = - 500 mm) = aW/az (x = 2500 mm) = -0.015 s-l, 
a W/az (X = 1000 mm) = - 3 1.434 s-l. 

The parameters were chosen to generate a strong convergence on the floor of the test 
section without risk of flow separation under the roof. The test section was generated 
by following streamlines that intersected a rectangle (height = 250 mm, width = 
800 mm) at x = - 500 mm to x = 2500 mm as shown in figure 1 for (3Dc). The resulting 
cross-sections deviated slightly from rectangular. As the test section was to be used for 
flow in either direction, the cross-sections were approximated by rectangles of the same 
area. The computed pressure field at y = 0 and the lateral convergence above the 
centreline are shown in figures 3 and 7. The test section was built with laminated 
fibreglass covering Styrofoam cores, which resulted in a very stiff configuration with an 
accuracy better than 0.2" for the direction of the wall normal. 

The instrumentation was fairly standard and consisted of: (1) static pressure taps 
with 0.8 mm diameter; (2) Pitot tubes with Preston-tube geometry and 1 mm and 
0.5 mm outer diameter; (3) a three-hole probe manufactured by soldering together three 
stainless steel tubes with 0.35 mm outer and 0.22 mm inner diameter. The centre tube 
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FIGURE 2. The boundary-layer tunnel. 
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FIGURE 3. Pressure distribution at y = 0, C, = 2(p -p(O, O,O))/[pU(O, 0, O)']. 

was flat ended and the other two had angles of 40" to the probe axes; (4) a five-hole 
probe with a similar arrangement; ( 5 )  crossed hot-wire probes DANTEC 55P61 with 
1.25 mm wire length and 5 pm wire diameter; (6 )  a floating-element balance designed 
by Zurfluh (1984) and described by Hirt, Zurfluh & Thomann (1986). The location of 
the instruments on the movable test wall is shown in figure 4. The position of the 
probes was about 100 mm upstream of the probe holder. 

All pressures were recorded with a DRUCK PDCR 22 transducer connected to the 
probes with a Scanivalve scanner. The hot-wire probes were operated with a TSI IFA 
100 anemometer with TSI Model 150 bridges, TSI Signal Conditioner Model 157 and 
TSI IFA 200 A/D-converter. All signals were recorded and reduced by a DEC 
MicroVAX 11. Typical sampling rates were 30000 samples in 3 s for pressure and 
10000 samples in 10 s for hot wires. 
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FIGURE 4. Location of probe holder (a), floating element (b), and pressure taps (c). 
Dimensions in mm. 

For the data reduction, the Preston-tube readings App were reduced to r, using the 
relation suggested by Zurfluh (1984) : - = c, + C2(X- X,) + C,(X- X,)2 + C,(X- x L 7  )3 

AP (2.2) 
7, 

with 

while for 3.3 < X < 4.8 
X = log,,, (App O2/4pv2) 

C, = 34.88, C, = 32.42, C, = 12.44, C, = -4.815, XL = 3.3; 

for 4.8 < X < 5.7 

C, = 95.27, C, = 37.26, C, = -9.220, C, = 5.262, X ,  = 4.8; 

and for 5.7 < X < 7.2 

C, = 125.17, C, = 33.45, C, = 4.989, C, = 0.685, XL = 5.7. 
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The three- and the five-hole probes were always aligned with the x-axis and calibration 
fields were used to reduce the pressure readings to velocity components. 

The Reynolds stress tensor was determined with a crossed hot-wire probe that was 
rotated into four roll-angle positions. The procedure is described in detail by Anderson 
& Eaton (1987) and by Pompeo (1992). According to Hirota, Fujita & Yokosawa 
(1988) the accuracy of this procedure can be improved by using two symmetric probes 
(long prongs of one probe in place of the short prongs of the second probe). In the 
present case the symmetry of the test section was used to improve the accuracy in a 
similar way using only one probe. The geometry of the probe and the probe holder 
prevented measurements below y = 3 mm. Three- and four-wire probes were also tested 
but the accuracy was found to be insufficient (Pompeo & Thomann 1993). 

The balance records the torque about its axis d shown in figure 4. The x- and z- 
components of the wall shear stress could therefore be determined by rotating the 
balance about point d until the centre of the floating element was at z = z ,  =# 0. Two 
experiments with the floating element in the same position (x, z,) but with the balance 
axis d once upstream and once downstream of the element allowed the determination 
of the two components of 7,. 

The errors are expected to be below 2 %  for velocity and 7w, below 0.3" for angles 
and below 10% for the Reynolds stresses shown. Details of the equipment, the data 
reduction and the accuracy can be found in Pompeo (1992). 

3. Experimental results 
3.1. MeanJEow in the plane of symmetry 

The velocity U, at the outer edge of the boundary layer is shown in figure 5. It is 
practically constant for the 2D test section, which was corrected for the displacement 
thickness. The 3D test section could not be corrected as it was simply reversed when 
changing from 3Dc to 3Dd. This resulted in an acceleration of the flow by about 4 %  
for both cases. Figures 6 and 7 show that the measured inviscid flow field agrees well 
with the predictions based on potential flow in spite of the slight streamwise 
acceleration. 

The wall shear stress C, = 2 . r W / p q  is shown in figure 8. Balance and Preston tube 
measurements agree to within 1 YO or better. The boundary layers at x = 0 are slightly 
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FIGURE 6 .  Yaw angles at y = 100 mm, comparison of experiment (-) with 

theory (- - - -), 3Dc. 
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FIGURE 7. (a) Lateral convergence at y = 100 mm, z = 0. Comparison of experiment (--n-) 
with equation (2.1) (---); 3Dc, U, = 42 m/s. (b) Lateral divergence; 3Dd. 

different as different inlet sections had to be used. This explains the different results at 
x = 0. The maximum in C, near x = 1500 mm for 3Dd is caused by the decrease of the 
boundary-layer thickness combined with an increased turbulence intensity. 

The velocity profiles were measured with Pitot probes with 1 mm diameter. They are 
shown in figure 9 and demonstrate the existence of the law of the wall (equation (1.1)) 
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FIGURE 8. Wall shear stress; Cf = 2rJpVL;; -, balance; - - - - -, 1 mm Preston tube; 

_ _ _ _ _  , 0.5 mm Preston tube (3Dd only). 
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FIGURE 9. Mean velocity profiles; 0 ,  experiments; -, equation (1.1). 

for all three cases. The main difference is in the wake contribution, which is increased 
by convergence and decreased by divergence. 

The boundary-layer thickness S( U(S)/ U, = 0.995), the displacement thickness S, and 
the momentum thickness 8, are shown in figure 10. As expected, they are increased by 
convergence and decreased by divergence. The shape parameter H = S,/6, was slightly 
increased by convergence and decreased by divergence. 

3.2. Turbulence in the plane of symmetry 
The Reynolds stresses measured in the plane of symmetry of all three test sections are 
plotted in figures 11 and 12. The level of all turbulence components was decreased by 
convergence and increased by divergence. The normal stress hierarchy 2 > 2 > 3 
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experiments : 
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FIGURE 11. Normal stresses measured inthe plane ofsymmetry of the test sections: 0, 2/q;  
a, v 2 / q ;  +, w " q .  
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FIGURE 12. Turbulent shear stress measured in the plane of symmetry: 0, iiD/q; 0, wall shear 
stress measured with the balance; e, i%/ay from @/ax. 
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FIGURE 13. Turbulent kinematic viscosity ell and mixing length I measured in the plane of 
symmetry: El, x = 0 mm; 0, 500; A, 1000; +, 1500; x,  2000; 0, 2500. 

Figure 13 shows that the 2D-flow behaves as expected: little change with x, 1 M 0 . 4 1 ~  
close to the wall and I M 0.0856 in the outer region. The same is observed for the initial 
stations of both 3Dd and 3Dc. For the convergent flow a strong decrease with x of both 
cll and 1 is found. The rate of decrease is largest near x = 1000 mm where (aW/azl has 
its maximum and the flow does not recover between x = 1500 mm and 2500 mm where 
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FIGURE 14. Skewness S, and S, on the plane of symmetry. Symbols as in figure 13. 

(3 W/az( decreases. The diverging flow shows the opposite behaviour : ell and 1 increase 
with x to a maximum near x = 1500 mm but recover almost completely between 
x = 1500 mm and 2500 mm. The results for 3Dd are similar to the results reported 
by Saddoughi & Joubert (1991) who do not show results for converging streamlines. 

The following turbulence quantities were determined : 
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FIGURE 15. Axial velocity distribution U / U e  (z = 0) ;  3Dc; steps between isolines = 0.05. 
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FIGURE 16. Axial velocity distribution U / U ,  (z = 0); 3Dd; steps between isolines = 0.05. 

It is interesting to note that a,, R,,, F, and & are essentially independent of 
convergence and divergence and that a, is close to 0.15 as suggested by Bradshaw, 
Ferris & Atwell (1967). The skewness factors S,  and S, shown in figure 14, on the other 
hand, show a significant variation, similar in trend to e,, and 1 in figure 13. As the 
skewness is an odd function it indicates that the signal is more spiky for 3Dd and less 
so for 3Dc. 

3.3. Flow outside the symmetry plane 
The main interest of this paper is directed towards the plane of symmetry. In spite of 
this, some results of the full flow are presented as additional information. The 
thickening of the boundary layer by convergence and the thinning by divergence are 
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once more illustrated in figures 15 and 16. The axial velocity U was determined with 
the five-hole probe. The significant change of S with z for 3Dc and x 2 1500 mm is in 
strong contrast with the uniform &(z) for 3Dd. This is consistent with the C,,(x,z) 
shown in figure 17. The Cf, were determined from the readings of a 1 mm Preston tube 
with its axis parallel to the x-axis. The balance readings at z = 60 and 180 mm were 
determined as described in $2. They are in good agreement with the Preston-tube 
results. 

The crossflow profiles in figure 18 complete the picture of the three-dimensional 
mean flow field. The change of direction of the profiles between x = 1000 and 1500 mm 
is due to the change of sign of i3p/az illustrated in figure 3. 

The Reynolds stresses shown in figures 11 and 12 were also determined at x = 

18-2 
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FIGURE 18. Cross-flow profiles WJUP in streamline coordinates at z = 100 mm 

Momentum flux 
(4 (h) 

Contribution to the 
continuity equation Mass flow (kg/s) momentum equation or force (N) 

Contribution to the 

0.8939 J I p ( u + z ) d S  -(36.7269 $0.0348) 

-0.8349 

0.1040 

c PWdS 0.1148 
J L  

-0.2884 
J T  

Total -0.0106 

J p ( . V + g ) d S  32.3386+0.0558 

~ p ( U W + ~ ) d S  -3.7357+0(0) 

l I ,p( UW+ ..> dS  -4.1228 + 0(0) 

JT,p(U V+i%)dS 12.3995 + 0 

- 1.4672 

0.91 16 

S,.,,dS 0.9797 

Total 0.5978 
TABLE 1. (a) Integral mass balance and (b) integral momentum balance, 3Dc; I :  in at x = 0; 0:  
out at x = 900 mm; R, L :  right and left at z = +200 mm; T :  top at y = 50 mm; B :  bottom at 
y = 0. 
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1000 mm and z = 100 and 200 mm for 3Dc and 3Dd. No change of the normal stresses 
with z could be observed while m seemed to decrease by a few percent between z = 0 
and 200 mm for both test sections. 

3.4. Verijication of the conservation laws 
The time-averaged integral form of the continuity and the momentum equations were 
applied to a control volume located between x = 0 and 900 mm, y = 0 and 50 mm and 
z = -200 and +200 mm of 3Dc. The contributions to the two equations are given in 
table l (a)  and 1 (b). They show that the difference between in- and outgoing mass was 
0.9 % of the ingoing mass while the corresponding figure for the momentum equation 
is 1.3%. 

4. Comparison with computed results 
The experiments described in 0 3 will be compared with results computed with a 

boundary-layer code developed by Bettelini (1 990) and described by Bettelini & 
Fannelerp (1993). The method solves the first-order boundary-layer equations 
formulated in terms of streamline coordinates by means of a finite-difference technique. 
The length ds, = e,dx, and the velocity component u1 point in the streamwise 
direction, ds, = e2 dx, and u, in the crossflow direction and ds, = e, dx, and u, in the 
wall-normal direction with e, = 1 .  It is first-order-accurate in the streamwise direction. 
Implicit finite-differences with second-order accuracy are used in the crossflow and in 
the wall-normal direction. 

The transition to turbulence took place more than 2.8 m upstream of the station 
x = 0. The computation was therefore started at x = 0 with the measured U-profiles 
averaged over z and slightly smoothed. Pertinent information is given in figures 9 and 
10 for x = 0. The small mismatch in C, shown in figure 19 for x < 60 mm had a 
negligible influence on the results. The choice of the boundary conditions at the outer 
edge of the boundary layer, on the other hand, had a considerable influence on the 
results for 3Dc. Three approaches were tested : (a) Ue and We from experiments, (b) U ,  
and We from potential flow as given by equation (2. l), (c) the same as (b) but with both 
Ue and We multiplied by Ue(x)/Ul, as given in figure 5 ,  to take into account the 
displacement effect of the boundary layer. All three approaches generated the excessive 
growth of S,(x) near the plane of symmetry shown in figure 20. The good agreement 
shown in figures 6 and 7 led to the choice of (c) for the results presented here. The 
computations used 200 grid points in the wall-normal direction, spaced in a geometric 
progression, and x1 steps of 0.336. Numerical convergence was verified by varying the 
step sizes. 

The flow near the plane of symmetry can be computed by introducing the unknown 
S = au,/c?x, instead of u2 and replacing the momentum equation in the x,-direction by 
its x,-derivative. The resulting system has the advantage that it can be solved along the 
plane of symmetry without taking into account additional streamlines, which reduces 
the computational effort by an order of magnitude. The results of this method could 
hardly be distinguished from boundary-layer calculations based on the full three- 
dimensional system. 

The Reynolds stresses were modelled as 

__ __ au, au au, au I t  

- u, u3 = €,, - + czz 2. ax, ax, ax, ax, -u’,u; = 
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FIGURE 19. Wall shear stress. Experiments: [3, 3Dc; A, 2D; 0, 3Dd. Predictions: -, step 1 ;  
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FIGURE 20. Momentum thickness S,, symbols as in figure 19. 

In the present case (plane of symmetry) e12 does not appear in the equations and 
cZl = 0. An anisotropy parameter E is introduced to connect eZ2 with ell according to 

€22 = Et.,,; 
ell was determined as suggested by Cebeci & Smith (1968). 

For x, < x:: 
au  

Ell = 12' ax, 
where 1 = 0.41x3D, D = 1-exp(-u,x3/26v); 
and for x, 2 x,* 

where K = 0.0168, y = [ 1 + 5.5(~,/S)~]-', 

where x,* denotes the smallest wall distance x3 for which (4.3) and (4.4) assume the 

€11 = KU,d, y ,  (4.4) 
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FIGURE 21. Velocity profiles at x = 2000 mm, symbols as in figure 19. 
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FIGURE 22. Turbulent shear stress at x = 2000 mm, symbols as in figure 19. 

same value. U,, 6, u, and v denote the external velocity, the boundary-layer thickness 
(U = O.999Ue), the friction velocity and the kinematic viscosity respectively. 

The agreement between experiments and computations was improved in several 
steps which are closer to ‘numerical experiments’ than to physical reasoning. 

Step 1 : Standard method 
The turbulence model in (4.1)-(4.4) was used. Wall shear stress C,, a,, typical 

velocity profiles and shear-stress distributions are shown in figures 19-22. As expected, 
case 2D was well predicted. In 3Dd the velocity profile, 8, and the shear-stress profile 
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FIGURE 23. Momentum thickness S,, 3Dc. -, E = 1 ; ----, E = 2; E = 10; 

_ - _ -  , E = 100, [3, experiments. 

x(mm) K(3Dc) K(3Dd) 
0 0.01 68 0.0168 

500 0.01 55 0.01 75 
1000 0.0110 0.0230 
1500 0.0060 0.0250 
2000 0.0060 0.0230 
2500 0.0060 0.0190 

TABLE 2. Adjusted constant K in  equation (4.4) 

were in good agreement while Cf was too low. Case 3Dc was much worse, with 6, and 
shear-stress profiles much too big. In particular, 6, was difficult to predict as the 
sensitivity to step size and initial conditions was much higher than for the other 
quantities. 

Step 2: Adjustment of ell for  3Dc and 3Dd 
In an attempt to improve the predictions the turbulence model was adapted to the 

experimental results. The excellent agreement with the ‘law of the wall’ shown in figure 
9 suggests that (4.3) should not be changed. Experience with the 2D flow indicated that 
taking into account the measured decrease of ell in 3Dc (figure 13) would reduce the 
excessive growth of 6,(x) observed in figure 20. Equation (4.4) was therefore modified 
by adapting K as indicated in table 2. 

The results (dotted lines in figures 19-21) show good agreement for C,, but some 
velocity and shear-stress profiles improved, some deteriorated and the problem with 
6,(x) remained. 

Step 3 ; Adjustment of 
An attempt to improve the agreement for 3Dc was based on the following ideas. The 

mass balance mentioned in 93.4 shows that the outflow through the top of the volume 
at y = 50 mm (0.3 kg/s) is due to the difference between ‘in’ and ‘out’ in the flow 
direction (0.1 kg/s) and to the inflow from the two sides at z = +200 mm (twice 
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FIGURE 24. Velocity profiles, symbols as in figure 23. 

0.1 kg/s). The crossflow therefore contributes considerably to the thickening of the 
boundary layer. If it is slightly too big, the error will accumulate downstream and result 
in an excessive growth of boundary layer and momentum thickness. Furthermore, 
predictions with STAN5 (Crawford & Kays 1976), using the version for a body of 
revolution without crossflow, resulted in a 6,(x) below the experimental values. This 
suggested that a decrease of the crossflow by increasing eZ2 = Ecl1 would decrease the 
excessive growth of a,($ and generate more realistic predictions. Big increases of E 
could be chosen as E+oo would eliminate the crossflow completely, leading to 
conditions similar to the body-of-revolution flow mentioned above. 

The results, shown in figures 23-25 for 3Dc, support this procedure. The best 
agreement is near E = 3 while the computation failed completely for E < 0.8 because 
of excessive growth of 6,. Attempts to increase E while keeping K =  0.0168 in the 
expression for ell, or to decrease ell while keeping eZ2 unchanged, were considerably 
less successful. 

Case 3Dd was well predicted with step 2 (figures 19-22) and it proved to be much 
less sensitive to changes of E. A decrease from E = 1 to E = 0 could hardly be observed 
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FIGURE 25. Turbulent shear stress, symbols as in figure 23, u; uj = uv. 

in figures 19-22. This is probably because the crossflow profiles changed their shape 
considerably while their displacement thickness remained nearly constant. The 
different sensitivities of converging and diverging flows are also found in the stability 
analysis by Scholtysik, Bettelini & Fannelerp (1993). 

As mentioned before, steps 2 and 3 should be considered as ‘numerical experiments’ 
guided by physical intuition. The success of step 3 clearly shows the great influence of 
the crossflow in a converging flow. However, E z 3 was an unexpected result. The code 
was therefore carefully checked in the following way : 

(i) independence of step size was verified. 
(ii) 2D laminar boundary layers were very accurately predicted. 
(iii) The self-similar boundary layer formed on a plane wall at x, = 0 under a fluid 

(iv) The results for the 2D turbulent boundary layer agreed well with the 

(v) The fully 3D boundary-layer calculations agreed very well with the calculations 

in solid-body rotation about the x,-axis (Schlichting 1982), was very well predicted. 

experiments, figures 19-21. 

restricted to the plane of symmetry. 
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(vi) Decreasing the crossflow by arbitrarily increasing the crossflow viscosity led to 
results that agreed well with results for a corresponding body of revolution (no 
crossflow) simulated with STAN5. 

5. Conclusions 
Experimental results for turbulent boundary layers near a plane of symmetry are 

presented. The boundary layers were subject to lateral convergence and divergence 
while the acceleration in the flow direction was kept negligible. 

In the outer part of the boundary layer the skewness and the turbulent viscosity were 
considerably reduced by convergence and increased by divergence while excellent 
agreement with the ‘law of the wall’ was found close to the wall. 

The prediction of the diverging flow agreed well with the measurement and posed no 
special problems. The prediction of the converging flow, on the other hand, was very 
difficult. Small errors in the crossflow accumulate near the plane of symmetry and have 
a considerable influence on the continuity equation and thus on boundary layer and 
momentum thickness which leads to bad agreement. Little improvement was obtained 
by taking into account the measured decrease of the turbulent viscosity. Combining 
this decrease with a simple anisotropy to adjust the strength of the crossflow resulted 
in excellent agreement, demonstrating the importance of the crossflow. The authors do 
not believe that these ‘fixes’ (decrease of K and increase of Ej‘ are universal and can be 
used in other computations. They serve, however, as warning that simple turbulence 
models might fail. The prediction of this converging flow should therefore be a very 
good test for computational methods. 

All data presented here and by Pompeo (1992) are available on 3.5” floppy discs from 
the third author. 
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